- magnolia’ |

B 1 mg Acm
ymposable D)

Planfing and implementing a DXP
\ architecture with Magnolia

o= m

—— e

Contents

The composable DXP
A framework for DXP planning

Acme’s use case

The status quo

Content Management

Omnichannel Orchestration & Delivery
Integrations & Extensions
Deployment

Security & Privacy

Summary

13
14
21
21

22

The term “Digital Experience Platform” (DXP) refers to an integrated
technology stack that helps enterprises create and optimize engaging
digital customer experiences throughout the customer journey. While
the idea behind a DXP isn't new, the term itself is only gaining popularity
now.

Many old DXPs rely on monolithic software suites that pose a barrier to
change, preventing companies to adapt to customer expectations at the
speed that is required to make their mark.

According to Gartner, modernizing the DXP stack “means abandoning
monolithic technologies that cannot meet market demands. To future-
proof the stack, a composable DXP must be adopted as a way to deliver
composable user experiences.”

Because of the flexibility of “composability”, the complexity of
composable DXPs can seem hard to grasp. And while no two
composable DXPs are identical, you can use a common approach to
reduce complexity and build a DXP that meets your needs uniquely.

This white paper will demonstrate how to plan and implement a
composable DXP using the example of Acme, a fictitious retailer. You
can apply the same practices to your use case.

The idea of composability is based on the combination and integration
of a set of technology components. Each component augments the
DXP by providing certain capabilities for creating and managing digital
experiences.

This approach allows companies to determine the breadth and
capabilities of their DXP flexibly. While some components are integral
to a DXP, others are optional and can be added incrementally. Integral
components include content and experience management, and delivery.
Optional components complement the DXP and include personalization
and optimization.

Another benefit of composability is the ability to adapt to changing
requirements. Individual components can be replaced by technologies
that are a better fit at any time.

' Gartner, Magic Quadrant for Digital Experience Platforms, 26 January 2021

A framework for DXP planning

Management layer

Infrastructure layer

Building Acme’s Composable DXP

Without a structured approach, planning a composable DXP can easily
become an overwhelming exercise, either leading to the omission of
required capabilities or the abandonment of the composable DXP in
favor of an inflexible packaged DXP solution. In both cases, you risk
finding yourself in a situation that is less than ideal, limiting your ability
to deliver.

To help you overcome its complexity, we break the DXP down into 3
layers; each layer has 4 building blocks.

Discovery O Delivery | Personalization Management

The framework identifies components to consider when building your
DXP, and helps you assess which components already exist in your
current technology stack, allowing you to plan for their integration. It
might also highlight components that had not been considered, allowing
you to close any gaps.

While the framework is not exhaustive, it covers the vast majority of

use cases and provides almost unlimited flexibility through integration.
Using a framework like this, helps you to set yourself up for DXP success
from the start.

Acme’s use case

We are going to use Acme, a fictitious retailer, as an example to

demonstrate how to build a composable DXP with Magnolia. Their use

case is similar to a lot of use cases that we come across in our daily

work with our customers and prospects.

The status quo

Acme is a clothing retailer that conducts its main
business online, but also owns brick-and-mortar
stores. Acme’s challenge is to build a new platform to
seamlessly deliver engaging customer experiences
across various digital channels at speed.

Its current content management system (CMS) was
identified as a limiting factor because it requires
developers to work with its templates rather than
integrating with a front-end framework like React,
which Acme developers have been requesting for

a while. Re-using content on channels beyond the
website has also proven difficult.

Acme is now looking for a headless content
management system (CMS) that sits at the center of
its platform integrating its existing DX ecosystem,
most importantly its commerce solution.

The CTO wants to ensure that the new platform is
flexible and can integrate with new technologies
easily to avoid getting stuck in the future.

The company has been migrating to the cloud over
the last couple of years and would like to run the
platform on state-of-the-art cloud architecture.

Acme also has the following technical requirements for their new

Digital Experience Platform:

Visual editor to manage
experiences

Our content authors are used to working in a WYSIWYG editor. The
new platform should allow them to do that, while having a modern look

and being comfortable to use.

Headless content delivery with
the Jamstack

Our front-end developers want to develop digital experiences in React.
We want to enable this without impacting our content authors.

We would also like to improve our website’s performance using Netlify.

Fashion blog

We want to host a fashion blog featuring topical products.

Product reviews

Digital signage in stores

Access though SSO

commercetools

Salesforce Marketing Cloud

Google Analytics

Cloudinary

We developed a custom solution for product reviews and would like to
leverage the solution on the product pages. The solution offers APIs to
create and query product reviews.

We would like to populate the screens in our stores with content
from the CMS. This content should be easily created in the CMS and
dynamically displayed.

We want our content authors to log into the platform with their existing
Acme account.

We manage our products and shop accounts in commercetools

and want to continue to do so. The platform has to integrate with
commercetools and should allow our e-commerce team to easily use
product data in our digital experiences.

We store customer profiles and newsletter subscriptions in Salesforce
Marketing Cloud. We would like to integrate marketing forms on our
website and store all customer data in Salesforce.

Web analytics are key to our organization. We report on our key
metrics on a regular basis and expect our teams to leverage data when
creating experiences.

We use a lot of images on our website and in our store. We
implemented Cloudinary as our Digital Asset Management (DAM)
system and the new platform has to integrate with it.

Content Management

Creative control - choose
the components you want,

place them where you need

magnolia

= Pges /' About

Sl |

See the interface in

your own language

Magnolia provides the Content Management building block via its

core product, offering traditional web content management as well as
headless content delivery. This approach allows developers to consume
presentation-independent content from a central repository via API
while creating the front end in React.

When working with Magnolia in a headless scenario, its Visual SPA
Editor is a game changer for author/developer collaboration. Despite
the decoupled front end, content authors can create content and design
experiences using a WYSIWYG editor in Magnolia’s AdminCentral. For
Acme this means that developers work in React, while authors work in
the CMS.

Drag and drop
components

Visual editing - authors
work in context

Learn more

OUR COMPANY

Copy and paste Preview the experience
components as an end user

The following paragraphs explain the concept of the Visual SPA Editor
and how it is able to render and edit the front end. For a detailed step-by-
step guide, explaining how to set up a headless project using the Visual
SPA Editor, please consult Magnolia’s headless documentation. The

examples below are part of the minimal-headless-spa-demos project

within this documentation.

Similar to Magnolia’s page editor, the Visual SPA Editor relies on
templates and dialog definitions. To enable authors to manage a
single-page application or another custom front end, the front end has
to provide Magnolia with a list of page components and their editable
properties. Instead of using freemarker to render a page, it uses its
dedicated SPA renderer. The SPA template file and renderer are defined
in the page template.

react-minimal-Im/templates/pages/basic.yaml (

title: 'React: Basic

templateScript: /react-minimal-lm/webresources/build/index.html
dialog: spa-lm:pages/basic

renderType: spa

class: info.magnolia.rendering.spa.renderer.SpaRenderableDefinition

areas:
main:
title: Main Area
availableComponents:
Headline:
id: spa-lm:components/headline
Image:
id: spa-lm:components/image
Paragraph:
id: spa-lm:components/paragraph
Expander:
id: spa-lm:components/expander
List:
id: spa-lm:components/list

extras:
title: Extras Area
availableComponents:
Headline:
id: spa-lm:components/headline
Paragraph:
id: spa-lm:components/paragraph
List:
id: spa-lm:components/list

spa-Im/dialogs/pages/basic.yaml (

label: Page Properties
form:
properties:
title:
label: Title
Stype: textField
i18n: true

react-minimal/src/pages/Basic.js (

import React from 'react’;

Each page or component has a dialog definition, configuring the fields
authors can edit. The YAML configuration is the same for traditional and
headless delivery. The below example shows how to configure the “title”
field.

The page’s actual code is created in the React front end, using the

properties defined in the component dialog. Magnolia’s React library
processes the template and its content to render the page, making it
available for visual editing by authors.

import { EditableArea } from '@magnolia/react-editor’;

const Basic = props => {

const { main, extras, title } = props;

return (
<div className="Basic">

<div className="hint">[Basic Page]</div>
<h1>{title || props.metadata['@name']}</h1>

<main>

<div className="hint">[Main Areal</div>
{main && <EditableArea className="Area" content={main} />}

</main>

<div className="Extras"

>

<div className="hint">[Sercondary Area]</div>
{extras && <EditableArea className="Area" content={extras} />}
{/* <button>Contact</button> */}

</div>
</div>
)
h

export default Basic;

A configuration file in the React application maps React components to
Magnolia components.

react-minimal/src/magnolia.config.js (

import Basic from './pages/Basic’;

import Contact from './pages/Contact’;

import Headline from ‘./components/Headline’;
import Image from './components/Image’;

import Paragraph from './components/Paragraph’;
import Expander from './components/Expander’;
import List from './components/List’;

import Item from './components/Item’;

const config = {
‘componentMappings’:{
‘react-minimal-lm:pages/basic’': Basic
‘react-minimal-lm:pages/contact’': Contact

‘'spa-1lm:components/headline’': Headline,
‘'spa-1lm:components/image’': Image,
‘'spa-1lm:components/paragraph': Paragraph,
‘'spa-lm:components/expander’': Expander
‘'spa-lm:components/list’: List,
‘'spa-lm:components/listItem': Item

e

export default config;

Based on the above configuration, Acme’s content authors can use the
Visual SPA Editor to manage experiences delivered from its React front
end.

Another capability that improves how content is managed is content
modelling using Content Types and Content Apps. Authors can easily
manage content in a structured way and make it available via Magnolia’s
REST or GraphQL APIs. Acme can use it to create a list of stores and, for
example, build a store finder on top.

Acme’s developers can create Content Types using low-code practices
in Magnolia’s Light Development. This file-based configuration allows
developers to make changes without backend development or a restart,
and enables the use of tools such as Git for configuration management.
Light Development also offers efficient ways to create content dialogs,
API endpoints, and page templates, reducing development effort and
shortening time-to-market.

The following example shows how Acme can create a Content App to
manage stores, their opening hours, as well as job openings.

Acme first creates three Content Types configurations:

<light-module-name>/contentTypes/store.yami

datasource:
workspace: stores
autoCreate: true

model:
nodeType: store
properties:
- name: address
- name: zipcode
- name: city
- name: state
- name: country
- name: services
type: service
multiple: true
- name: jobs
type: reference:job
multiple: true
- name: openHours
type: reference:openhours
subModels:
- name: service
properties:
- name: description
- name: openHours
type: reference:openhours

<light-module-name>/contentTypes/openhours.yaml

datasource:
workspace: store-open-hours
autoCreate: true

model:
nodeType: store-open-hour
properties:
- name: weekDays
- name: weekDaysHours
- name: saturday
- name: saturdayHours
- name: sunday
- name: sundayHours
- name: additionallnfo

<light-module-name>/contentTypes/job.yaml

datasource:
workspace: store-jobs
autoCreate: true

model:
nodeType: store-job

properties:
- name: description
type: richText
- name: start
type: Date
- name: isPublic
type: Boolean

Acme then creates a Content App to allow content authors to manage
data of each Content Type easily:

<light-module-name>/apps/stores-app.yaml
lcontent-type:store

name: stores-app

label: Stores

<light-module-name>/apps/open-hours-app.yami|
lcontent-type:openhours

name: open-hours-app

label: Open hours

<light-module-name>/apps/jobs-app.yaml
lcontent-type:job

name: jobs-app

label: Jobs

To enable Acme to consume store data from their React front end via
REST API, they create an endpoint:

<light-module-name>/restEndpoints/stores.yaml

class: info.magnolia.rest.delivery.jcr.v2.JcrDeliveryEndpointDefinition
workspace: stores
depth: 10
nodeTypes:
- store

references:
- name: jobsTypeReference

propertyName: jobs

referenceResolver:
class: info.magnolia.rest.reference.jcr.JcrReferenceResolverDefinition
targetWorkspace: store-jobs

name: openHoursTypeReference

propertyName: openHours

referenceResolver:
class: info.magnolia.rest.reference.jcr.JcrReferenceResolverDefinition
targetWorkspace: s-opetoren-hours

The REST endpoint will respond on http://acme.com/.rest/stores/.

For their fashion blog, Acme can use Magnolia’s Stories App to manage
content. It provides an interface to combine fixed metadata, such as a
headline, a date, and the author’s bio, with a variable number of content
blocks including text, images, and products. The configuration of a
Stories App is very similar to the configuration of a Content App.

To enable content authors and marketing teams, Magnolia also offers
capabilities known from traditional web content management including
multi-site management, translations, and publication workflows,
allowing authors to create and manage complex experiences efficiently.

Omnichannel Orchestration & Delivery

Acme has decided to deploy its website through Netlify’s globally
distributed network with automated pre-rendering for maximum
performance. Magnolia’s extension for Netlify allows Acme’s content
authors to build Netlify sites directly from Magnolia’s AdminCentral.

The extension configures Netlify sites for deployment and adds a field
“Build on Netlify” to the publication dialog allowing authors to choose
which Netlify sites to build. When a publication gets approved, Magnolia
instantly triggers a build for each selected Netlify site.

The extension is available in the Magnolia Marketplace and easily

installed as a Maven module:

<dependency>
<groupId>info.magnolia.cdn</groupId>

<artifactId>magnolia-netlify-integration</artifactId>
<version>$§{netlifyIntegrationVersion}</version>
</dependency>

The module configures a REST client to trigger a build via the Netlify
API. The API token can either be set in the Maven module itself or in a
separate module.

/decorations/netlify-integration/config/config.yaml

apiToken: your_api_token

You can find out more about Magnolia’s partnership with Netlify in our
blog Netlify and Magnolia partner to deliver best-practice headless CMS

frontends.

Besides the web channel, Acme has several screens in its brick-and-
mortar stores to display promotional content. Magnolia’s Digital Signage
App allows Acme to create dedicated content for these screens or to
reuse any existing content such as images and videos. Authors can
conveniently manage content for this channel in AdminCentral and rely
on the usual translation and publication workflows.

This extension is available as a Maven module.

Integrations & Extensions

Magnolia
Public

Magnolia

Public

Building Acme’s Composable DXP

Commerce integration

Acme has an established ecosystem of digital experience (DX)
technology that has to be integrated in its DXP. With Acme being a
retailer, its commerce solutions, commercetools, is one of the most
critical components for its business.

To integrate content and commerce in one platform, Magnolia provides
a Connector Pack for Commerce. The out-of-the-box integration enables

Acme’s developers to make external product data available in Magnolia.

While the actual data is stored and managed in commercetools, content
authors can seamlessly use product information on product and
category pages, or teasers, as if the content was native to Magnolia.
Authors can conveniently select specific products from the component
dialog filtered by category.

As Acme has chosen a headless architecture, its front-end developers
can consume product content through Magnolia’s REST API to display
the product data in the front end.

Front End
Author

Load o) Load
Balancer Balancer

As described in our documentation, Maven is the easiest way to install

the module.

<dependency>
<groupId>info.magnolia.ecommerce</groupld>
<artifactId>magnolia-ecommerce-commercetools-connector</artifactId>
<version>${ecommerce.version}</version>

</dependency>

<dependency>
<groupId>info.magnolia.ecommerce</groupId>
<artifactId>magnolia-ecommerce-templating</artifactId>
<version>${ecommerce.version}</version>

</dependency>

<dependency>
<groupId>info.magnolia.ecommerce</groupId>
<artifactId>magnolia-ecommerce-ui</artifactId>
<version>${ecommerce.version}</version>

</dependency>

Magnolia’s connector for commercetools makes the configuration
simple:

class: info.magnolia.ecommerce.common.EcommerceDefinition
type: commercetools
enabled: true
implementation:
products:
all: info.magnolia.ecommerce.commercetools.products.All
byId: info.magnolia.ecommerce.commercetools.products.ById
byCategoryId: info.magnolia.ecommerce.commercetools.products.ByCategoryId
searchByText: info.magnolia.ecommerce.commercetools.products.SearchByText
categories:
all: info.magnolia.ecommerce.commercetools.categories.All
byId: info.magnolia.ecommerce.commercetools.categories.ById
byParentCategoryId: info.magnolia.ecommerce.commercetools.categories.ByParentCategoryId
byProductId: info.magnolia.ecommerce.commercetools.categories.ByProductId
connections:
connectionName:
enabled: false
authUrl: https://demo.commercetools.com
parameters:
clientId: client_id
clientSecret: client_secret_or_path_to_password_manager
apiUrl: https://demo.commercetools.com
projectKey: project_key

Integration of external APIS

Acme would like to leverage a custom-built solution for product reviews
to enrich its product pages. Customers can review and rate products,
and see other customers’ reviews, too.

The review system offers APIs to write and read product reviews.
Magnolia’s REST client, Multisource, allows Acme to easily read product
reviews from this third-party system via APl using YAML configuration.

Magnolia’s declarative-rest-demo project provides the following

example, that Acme can copy:

baseUrl: http://openlibrary.org/api
restCalls:
searchByIsbn:
method: get

entityClass: java.lang.String
path: /volumes/brief/isbn/{isbn}.json
defaultValues:

isbn: 978-3-16-148410-0

To write data to the review system, Acme needs a custom Java-based
REST endpoint.

Marketing integration

Salesforce Marketing Cloud is Acme’s CRM and marketing automation
system. It is the system of record for all customer data. All new
customer registrations and newsletter sign-ups are to be stored in
Salesforce Marketing Cloud through an integration with its marketing
forms.

Using the Connector Pack for Marketing Automation, Magnolia retrieves

marketing forms and their fields from Salesforce via API.
Authors can choose a form in Magnolia and arrange its fields in any
order. To place an individual form field on a page, authors select it from

a simple dialog. The style of the form is defined by the Magnolia theme.

When the form is submitted, its data is directly written to the CRM.

Marketing Magnolia
software
Magnolia Public

Pages app Published form
Formis
available in
Magnolia

Form data is sent to and stored in third-party system

As described in our documentation, Maven is the easiest way to install

the module.

<dependency>
<groupId>info.magnolia.marketingautomation</groupId>
<artifactId>magnolia-marketing-automation-ui</artifactId>
<version>${marketing-automation.version}</version>

</dependency>

<dependency>
<groupId>info.magnolia.marketingautomation</groupId>
<artifactId>magnolia-marketing-automation-salesforce-connector</artifactId>
<version>$§{marketing-automation.version}</version>

</dependency>

The configuration using Magnolia’s connector for Salesforce is simple:

class: info.magnolia.mkautomation.definition.DefaultMarketingFormDefinition
enabled: true
type: salesforce
implementation:
forms:
all: info.magnolia.mkautomation.salesforce.forms.All
byId: info.magnolia.mkautomation.salesforce.forms.ById
byName: info.magnolia.mkautomation.salesforce.forms.ByName
submitBy: info.magnolia.mkautomation.salesforce.forms.SubmitBy
leads:
searchBy: info.magnolia.mkautomation.salesforce.leads.SearchByQuery
connection:
baseUrl: https://mianlien.my.salesforce.com/services
authUrl: https://login.salesforce.com/services/oauth2/token
credentials:
username: email@email.com
password: password_or_path_to_password_manager
clientId:
3MVG96_7YM2sI9wTSawWympuHDVI7wt6AsbvT1ILMgMWXfUgSfBOe4SztxStXnyjskXpQC571mKsUx2qddJiw
clientSecret: client_secret_or_path_to_password_manager
selectedForms:
- Lead
- Account
- Contact
formSelectorId: marketing-automation-ui:fieldsSelectionForm

magcnolia

e Ansiics

Demo

Conens Tags Word Cloud

ceberg kayak
ret Urban o B
-~ vest =
wmterm bicvel 3
s city ©. icycle sled

vehicle a
ansportation %
lzard watercrafi

2o N

ajphzIcIoW £
49

tr

w0

g 8 8

E

Building Acme’s Composable DXP

swimmmng P

g 3 % 8 %

3

&

Analytics integration

The integration of analytics systems in Magnolia operates in two
directions. Magnolia’s Marketing Tags App is based on JavaScript tags
and enables Acme to track data in Google Analytics, such as enhanced

visitor and usage information.

By using the Connector Pack for Analytics Acme can display analytics

data in Magnolia, saving authors time and effort to check this data in
another system.

The Connector Pack for Analytics provides the Analytics App to create
custom dashboards and charts, called widgets. Users can choose
between several grid layouts and use the convenient drag-and-drop
functionality to place their widgets. They can leverage commonly-used
metrics that Magnolia provides out of the box, or create advanced
custom widgets including a preview.

nan BEn oo ann e nun

T o2 2000 e

oaeadt 1@ 170320

By loading analytics data for content on a specific page, the Analytics
Connector Pack also enables authors to check how individual pages
perform. Furthermore, authors can filter data by typing a date range or
by selecting a specific range in the dynamic, clickable diagrams.

macnolia 0)
o ess
Pages
> o -
f v ves
[]
® - s Tramet b Towt reme o s 01,7024 D3 A

As described in our documentation, Maven is the easiest way to install
the module.

<dependency>
<groupId>info.magnolia.analytics</groupId>
<artifactId>magnolia-analytics-ui</artifactId>
<version>$8{analytics.version}</version>

</dependency>

<dependency>
<groupId>info.magnolia.analytics</groupId>
<artifactId>magnolia-analytics-amcharts</artifactId>
<version>${analytics.version}</version>

</dependency>

<dependency>
<groupId>info.magnolia.analytics</groupId>
<artifactId>magnolia-analytics-google-connector</artifactId>
<version>${analytics.version}</version>

</dependency>

<dependency>
<groupId>info.magnolia.analytics</groupId>
<artifactId>magnolia-analytics-adobe-connector</artifactId>
<version>${analytics.version}</version>

</dependency>

Magnolia’s connector for Google Analytics makes the configuration

simple:

dataSuppliers:
googleSupplier:
class: info.magnolia.analytics.google.datasource.GoogleDataSupplier
credentials:

applicationName: Magnolia Analytics
serviceAccountJsonPath: /google-analytics/analytics/google/private_key.json

parameters:
viewId: 191451339
startDate: 7DaysAgo
endDate: today
dimensionName: ga:date
metricExpression: ga:sessions
metricAlias: sessions

DAM integration

Magnolia offers digital asset management (DAM) natively or through the
Connector Pack for DAM. Acme uses Cloudinary and wants to integrate
this system into its DXP. The integration will allow content authors to use
images, videos and other digital assets from Cloudinary in Magnolia.

As described in our documentation, Maven is the easiest way to install
the module.

<dependency>
<groupId>info.magnolia.external.dam</groupId>
<artifactId>magnolia-external-dam</artifactId>
<version>{externalDamVersion}</version>
</dependency>

<dependency>
<groupId>info.magnolia.external.dam</groupId>
<artifactId>magnolia-external-dam-cloudinary</artifactId>
<version>{cloudinaryVersion}</version>

</dependency>

The setup of the Cloudinary extension requires a few connection
parameters, described in our documentation.

Deployment

Security & Privacy

Many enterprises are seeking to deploy their applications to the cloud,
and so does Acme. Besides using Magnolia’s Light Modules for low-
code configuration, Acme wants to be able to create custom Java
modules going forward and needs to ensure a reliable build pipeline
consisting of a development, integration, and production environment.
New features have to pass all stages of the pipeline before going into
production.

Rather than self-hosting Magnolia, Acme decides to deploy Magnolia’s
PaaS solution, reducing the effort of managing infrastructure while
maintaining maximum flexibility.

The solution can be managed in Magnolia’s Cloud Cockpit, giving Acme
full control over the environment. It also allows developers to copy
content from the production to the integration environment for testing.

Magnolia’s Single Sign-On (SSO) module offers an integration with
identity providers such as Azure Active Directory (Azure AD), AuthO, AWS
Cognito, Keycloak, and Okta, allowing Acme’s employees to use their
company account to log into Magnolia’'s AdminCentral automatically.

To set up SSO, Magnolia has to be configured as a client with the
authorization service. To identify it as a valid client, Magnolia receives
a client ID and a client secret, sometimes called app ID and app secret.
Acme’s |IT team also has to define one or more callback URLs, also
known as redirect URIs.

Our blog post “External User Management and SSO with Magnolia”
explains SSO with Magnolia in more detail.

Acme reached the limit of what is possible with their current CMS and
DX ecosystem. They defined technical requirements to achieve their DX
vision while also providing flexibility to evolve their DXP in the future.

We used the DXP framework and mapped the required capabilities to
building blocks. Acme’s DXP will initially consist of these building blocks:

Acme’s example is meant to demonstrate that this approach can be
applied to various use cases, allowing you to build a flexible platform
that meets your needs today and in the future.

mgnolia@’

Get in touch

To learn how Magnolia can help you launch great
digital experiences faster, contact us at:

Switzerland - Headquarters United States

+41 61 228 90 00 (305) 267-3033

Czech Republic Spain United Kingdom

+420 571 118 715 +34 662 63 43 36 +44 203 741 8083

Vietnam Singapore China

+84 28-3810-6465 +65 64 30 67 78 +86 2133 280 628

