Twitter
Facebook
Linked In
RSS
Login or Register
New to InternetRetailing?
Register Now
Internet Retailing
You are in: > Home > Themes > Selling

WEBINAR OVERVIEW The journey from data to shopping experiences: making AI work for you

Linked InTwitterFacebookeCard
Sharelines

WEBINAR OVERVIEW The journey from data to shopping experiences: making AI work for you

In a recent InternetRetailing webinar, The journey from data to shopping experiences: making AI work for you, Peter Thomas, CTO and Chintan Gupta, product manager at Attraqt, shared insights and advice on how retailers could reassess and reset their AI automation strategies. Here’s a bulletpoint overview of the presentation.

 

• Opening the webinar, the presenters asked how useful AI was to those taking part in the event.

 

Poll: Does AI assist you in your job today: 28% said they didn’t think so, 39% said not as much as I would like.

 

Ecommerce directions

In 2017 45% of marketers said marketing mostly involved real-time personalisation

By 2019, 90% expected to put marketing personalisation into use, moving to smart personalisation in 2020.

 

AI directions

By 2020 expectations of very substantial use of AI in digital commerce organisations.

By 2022 this will control interactions to a larger degree

 

Mega trends for the ecommerce channel

• Using IoT

• Digital experience extending in store

• Mobile: as much as 85% of commerce traffic already on mobile. Thomas: “From a retailer’s point of view you’re living in your customer’s pocket.”

• Social: about exchanging views

• Marketplaces:

 

Consumer trends

• Data privacy and security one of the most important for consumers.

• Changing behaviours for retailers and other websites
• Transparency: Rights don’t necessarily mean engagement and trust

• Cross-channel shopping: wouldn’t it be great if you were connected from online experience to the in-store experience? - but that doesn’t happen much at the moment.

 

Market trends in search

• Increasing amounts of choice – and data. As merchandising teams it’s hard to cope with that volume to provide a quality merchandising result.

• Search, personalisation through AI.

• Voice, image, all important ways of being able to enrich the conversation to make merchandising more productive and deliver more engaging experience.

 

Future trends

“Most of the devices we have currently are already to equipped to deal with additional signals” - tone of voice, scanning of items through the camera, mood, reflexes and heart frequency are also “going to be influences in the algorithms that actually drive experiences in the future and it’s important to start thinking about that now”.

 

AI as a colleague

Merchandiser defines the strategy, AI executes it, learning and adjusting towards goals that have been set.

 

ML aided shopper experiences

Factors in the shopping experience include trends, social, profile, context, intent

“It’s about making sure you’re understanding the shopper and the meaning being conveyed through actions.”


Global ranking

Simple ordering of search and navigation. We need more than just a basic global ranking, or only one or two things sell. Useful when little contextual or personal data, but prone to self-fulfilling results.

 

 

Wisdom of the crowd

• Not collecting direct information but enough information in terms of their location, context, time of day that might enable you to give the a digital fingerprint. “If you match that to other shoppers that have characteristics to suggest to your new shopper what they may be interested in.”

• Automatic segmentation to infer shopper preferences - apparent personalisation, appears to be personalised.

• The navigation on your site is just a suggestion for what might happen. Seen them before, see them again. Collect information in general terms, recommendations while still remain anonymous.

 

Personalised experiences

• One of the problems with relevancy is looking for a silver bullet - but let’s look at the things reducing relevancy: you may use knowledge of past transaction history if logged in on the site to say you’ve already bought that, may not want to buy it again.

• If you have the data why force your shopper to make that choice again, remove the choice. If you have personal measurements, companies specialise in matching those measurements to common brand sizes) “You can remove choice because you’re not presenting, for example, sizes of clothes that are irrelevant.”

• You may find you have more data than you realised in terms of being able to improve relevance just by removing those irrelevant data choices.

 

Session intent

• Adapts to current behaviour.

• Use NLP to understand synonyms. Update search and navigation, recent activity quickly outweighs past behaviour.

• Refining navigation to confirm understanding.

 

Visual experiences

  • Visual search, tagging, recommendations, shop the look.
  • Use AI to analyse images, recognise the items and products that are in the image. Fascinating enrichment of the shopper experience.
  • Shop the look: “the image is analysed and broken down into its component parts”. Powerful mechanism: when stocks of one item run low, can find something else that completes the look. “It a very engaging way of shoping. It’s about making process of discovering simple and intuitive”.

 

Test & learn

• Poll: 28% said used test and learn with external analytics and reports prepared by other teams, 50% used test and learn with reports built into the tools, 22% not yet.

 

Process of testing and learning

  • How to help AI adapt to the team
  • Agile process of test and learn
  • KPIs to work towards
  • ML algorithms must optimise to the same goal
  • Team reviews results and refines
  • Multivariate testing helps compare alternative strategies
  • “Incremental improvement builds team experience”

 

“It’s very important to adopt a team methodology that reflects review and adaptation. It’s a valuable source of information to have within the team much faster than you would have.

 

“The important thing is that you develop a methodology within the team so that you know what you’re looking at, and you can adapt”

• Great feedback mechanism.

 

Security and privacy

• Privacy now a major issue.

  • GDPR gives right to the shopper/user to help find out what information is being held. What’s not clear is how much consent you’re giving to what data.
  • Creating a trusting connection to shoppers is important for brands.

 

“A number of clients we’ve been working with are really tuned into this connection with their shoppers because it’s an important part of their brand. They are deliberately designing their shopper experience to be very explicit about consent. They present up front exactly what information is collected, what it’s for and make it very clear how they can revise their choices going forward. It generates a lot of trust on the part of the user.”

 

Watch the webinar in full below:

 

 

 

Linked InTwitterFacebookeCard

The InternetRetailing Newsletter

A curated update containing news analysis, reports, podcasts and opinion - completely free and delivered three times weekly

Become a Member

Create your own public-facing profile
Gain access to all Top500 research
Personalise your experience on IR.net
Internet Retailing
We are the magazine, portal and research source for European ecommerce and multichannel retail, hosting the board-level conversation for retailers, pureplays and brands across all of our platforms. Join the conversation.

© InternetRetailing Media

Latest Tweet

Internet Retailing
Tamebay
eDelivery
Twitter
Facebook
Linked In
Youtube
RSS
RSS
Youtube
Google
Linked In
Facebook
Twitter